Abstract
Nowadays the implementation of artificial neural networks in high-energy physics has obtained excellent results on improving signal detection. In this work we propose to use neural networks (NNs) for event discrimination in HAWC. This observatory is a water Cherenkov gamma-ray detector that in recent years has implemented algorithms to identify horizontal muon tracks. However, these algorithms are not very efficient. In this work we describe the implementation of three NNs: two based on image classification and one based on object detection. Using these algorithms, we obtain an increase in the number of identified tracks. The results of this study could be used in the future to improve the performance of the Earth-skimming technique for the indirect measurement of neutrinos with HAWC.
Recommended Citation
J. R. Angeles Camacho and J. R. Angeles Camacho and H. León Vargas and H. León Vargas and A. U. Abeysekara and A. Albert and R. Alfaro and C. Alvarez and J. D. Álvarez and J. C. Arteaga-Velázquez and K. P. Arunbabu and D. Avila Rojas and H. A. Ayala Solares and R. Babu and V. Baghmanyan and A. S. Barber and J. Becerra Gonzalez and E. Belmont-Moreno and S. Y. BenZvi and D. Berley and C. Brisbois and K. S. Caballero-Mora and T. Capistran and A. Carraminana and S. Casanova and O. Chaparro-Amaro and U. Cotti and J. Cotzomi and S. Coutino de Leon and E. De la Fuente and C. de Leon and L. Diaz-Cruz and R. Diaz Hernandez and J. C. Diaz-Velez and B. L. Dingus and M. Durocher and M. A. Du Vernois and R. W. Ellsworth and K. Engel and C. Espinoza and K. L. Fan and K. Fang and M. Fernandez Alonso and B. Fick and H. Fleischhack and J. L. Flores and N. I. Fraija and D. Garcia and J. A. Garcia-Gonzalez and J. L. Garcia-Luna and G. Garcia-Torales and F. Garfias and G. Giacinti and H. Goksu and M. M. Gonzalez and J. A. Goodman and J. P. Harding and S. Hernandez and I. Herzog and J. Hinton and B. Hona and D. Huang and F. Hueyotl-Zahuantitla and C. M. Hui and B. Humensky and P. Huntemeyer and A. Iriarte and A. Jardin-Blicq and H. Jhee and V. Joshi and D. Kieda and G. J. Kunde and S. Kunwar and A. Lara and J. Lee and W. H. Lee and D. Lennarz and H. Leon Vargas and J. Linnemann and A. L. Longinotti and R. Lopez-Coto and G. Luis-Raya and J. Lundeen and K. Malone and V. Marandon and O. Martinez and I. Martinez-Castellanos and H. Martinez-Huerta and J. Martinez-Castro and J. A. Matthews and J. McEnery and P. Noriega-Papaqui and L. Olivera-Nieto and N. Omodei and A. Peisker and Y. Perez Araujo and E. G. Perez-Perez and C. D. Rho and C. Riviere and D. Rosa-Gonzalez and E. Ruiz-Velasco and J. Ryan and H. Salazar and F. Salesa Greus and A. Sandoval and M. Schneider and H. Schoorlemmer and J. Serna-Franco and G. Sinnis and A. J. Smith and R. W. Springer and P. Surajbali and I. Taboada and M. Tanner and K. Tolllefson and I. Torres and R. Torres-Escobedo and R. Turner and F. Urena-Mena and L. Villasenor and X. Wang and I. J. Watson and T. Weisgarber and F. Werner and E. Willox and J. Wood and G. B. Yodh and A. Zepeda and H. Zhou, "Horizontal Muon Track Identification With Neural Networks In HAWC," Proceedings of Science, vol. 395, article no. 1036, Sissa Medialab Srl, Mar 2022.
The definitive version is available at https://doi.org/10.22323/1.395.1036
Department(s)
Physics
Publication Status
Open Access
International Standard Serial Number (ISSN)
1824-8039
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2025 Sissa Medialab Srl, All rights reserved.
Publication Date
18 Mar 2022

Comments
National Science Foundation, Grant PRODEP-SEP UDG-CA-499