Author

J. R. Angeles Camacho
J. R. Angeles Camacho
H. León Vargas
H. León Vargas
A. U. Abeysekara
A. Albert
R. Alfaro
C. Alvarez
J. D. Álvarez
J. C. Arteaga-Velázquez
K. P. Arunbabu
D. Avila Rojas
H. A. Ayala Solares
R. Babu
V. Baghmanyan
A. S. Barber
J. Becerra Gonzalez
E. Belmont-Moreno
S. Y. BenZvi
D. Berley
C. Brisbois
K. S. Caballero-Mora
T. Capistran
A. Carraminana
S. Casanova
O. Chaparro-Amaro
U. Cotti
J. Cotzomi
S. Coutino de Leon
E. De la Fuente
C. de Leon
L. Diaz-Cruz
R. Diaz Hernandez
J. C. Diaz-Velez
B. L. Dingus
M. Durocher
M. A. Du Vernois
R. W. Ellsworth
K. Engel
C. Espinoza
K. L. Fan
K. Fang
M. Fernandez Alonso
B. Fick
H. Fleischhack
J. L. Flores
N. I. Fraija
D. Garcia
J. A. Garcia-Gonzalez
J. L. Garcia-Luna
G. Garcia-Torales
F. Garfias
G. Giacinti
H. Goksu
M. M. Gonzalez
J. A. Goodman
J. P. Harding
S. Hernandez
I. Herzog
J. Hinton
B. Hona
D. Huang
F. Hueyotl-Zahuantitla
C. M. Hui
B. Humensky
P. Huntemeyer
A. Iriarte
A. Jardin-Blicq
H. Jhee
V. Joshi
D. Kieda
G. J. Kunde
S. Kunwar
A. Lara
J. Lee
W. H. Lee
D. Lennarz
H. Leon Vargas
J. Linnemann
A. L. Longinotti
R. Lopez-Coto
G. Luis-Raya
J. Lundeen
K. Malone
V. Marandon
O. Martinez
I. Martinez-Castellanos
H. Martinez-Huerta
J. Martinez-Castro
J. A. J. Matthews
J. McEnery
P. Noriega-Papaqui
L. Olivera-Nieto
N. Omodei
A. Peisker
Y. Perez Araujo
E. G. Perez-Perez
C. D. Rho
C. Riviere
D. Rosa-Gonzalez
E. Ruiz-Velasco
J. Ryan
H. Salazar
F. Salesa Greus
A. Sandoval
M. Schneider
H. Schoorlemmer
J. Serna-Franco
G. Sinnis
A. J. Smith
R. W. Springer
P. Surajbali
I. Taboada
M. Tanner
K. Tolllefson
I. Torres
R. Torres-Escobedo
R. Turner
F. Urena-Mena
L. Villasenor
Xiaojie Wang, Missouri University of Science and TechnologyFollow
I. J. Watson
T. Weisgarber
F. Werner
E. Willox
J. Wood
G. B. Yodh
A. Zepeda
H. Zhou

Abstract

Nowadays the implementation of artificial neural networks in high-energy physics has obtained excellent results on improving signal detection. In this work we propose to use neural networks (NNs) for event discrimination in HAWC. This observatory is a water Cherenkov gamma-ray detector that in recent years has implemented algorithms to identify horizontal muon tracks. However, these algorithms are not very efficient. In this work we describe the implementation of three NNs: two based on image classification and one based on object detection. Using these algorithms, we obtain an increase in the number of identified tracks. The results of this study could be used in the future to improve the performance of the Earth-skimming technique for the indirect measurement of neutrinos with HAWC.

Department(s)

Physics

Publication Status

Open Access

Comments

National Science Foundation, Grant PRODEP-SEP UDG-CA-499

International Standard Serial Number (ISSN)

1824-8039

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2025 Sissa Medialab Srl, All rights reserved.

Publication Date

18 Mar 2022

Share

 
COinS