Abstract

Very-high-energy (0.1-100 TeV) gamma-ray emissions were observed in High-Altitude Water Cherenkov (HAWC) data from the lobes of the micro quasar SS 433, making them the first set of astrophysical jets that were resolved at TeV energies. In this work, we update the analysis of SS 433 using 2565 days of data from the HAWC observatory. Our analysis reports the detection of a point-like source in the east lobe at a significance of 6.6σ and in the west lobe at a significance of 8.2σ. For each jet lobe, we localize the gamma-ray emission and identify a best-fit position. The locations are close to the X-ray emission sites "e1" and "w1" for the east and west lobes, respectively. We analyze the spectral energy distributions and find that the energy spectra of the lobes are consistent with a simple power law d N/d E ∝ E α with α = − 2.44 − 0.12 − 0.04 + 0.13 + 0.04 and α = − 2.35 − 0.11 − 0.03 + 0.12 + 0.03 for the east and west lobes, respectively. The maximum energy of photons from the east and west lobes reaches 56 TeV and 123 TeV, respectively. We compare our observations to various models and conclude that the very-high-energy gamma-ray emission can be produced by a population of electrons that were efficiently accelerated.

Department(s)

Physics

Publication Status

Open Access

Comments

National Science Foundation, Grant 243290

International Standard Serial Number (ISSN)

1538-4357; 0004-637X

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2025 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Nov 2024

Share

 
COinS