Abstract
We unravel the ground state properties and emergent nonequilibrium dynamics of a mixture consisting of a few spin-polarized fermions embedded in a two-dimensional bosonic quantum droplet. For an increasingly attractive droplet-fermion interaction we find a transition from a spatially delocalized fermion configuration to a state where the fermions are highly localized and isolated. This process is accompanied by the rise of induced fermion-fermion interactions mediated by the droplet. Additionally, for increasing attractive droplet-fermion coupling, undulations in the droplet density occur in the vicinity of the fermions manifesting the back-action of the latter. Following interaction quenches from strong to weaker attractive droplet-fermion couplings reveals the spontaneous nucleation of complex excitation patterns in the fermion density such as ring- and cross-shaped structures. These stem from the enhanced interference of the fermions that remain trapped within the droplet, which emulates, to a good degree, an effective potential for the fermions. The non-negligible back-action of the droplet manifests itself in the fact that the effective potential predictions are less accurate at the level of the many-body wave function. Our results provide a paradigm for physics beyond the reduced single-component droplet model, unveiling the role of back-action in droplets and the effect of induced mediated interactions.
Recommended Citation
J. C. Pelayo et al., "Phases and Dynamics of Few Fermionic Impurities Immersed in Two-Dimensional Boson Droplets," Physical Review Research, vol. 6, no. 3, article no. 033219, American Physical Society, Jun 2024.
The definitive version is available at https://doi.org/10.1103/PhysRevResearch.6.033219
Department(s)
Physics
Publication Status
Open Access
International Standard Serial Number (ISSN)
2643-1564
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2024 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Jun 2024
Comments
Okinawa Institute of Science and Technology Graduate University, Grant JP23K03290