Abstract

Unstable periodic orbits (UPOs) play a key role in the theory of chaos, constituting the "skeleton" of classical chaotic systems and "scarring" the eigenstates of the corresponding quantum system. Recently, nonthermal many-body eigenstates embedded in an otherwise thermal spectrum have been identified as a many-body generalization of quantum scars. The latter, however, are not clearly associated to a chaotic phase space, and the connection between the single- and many-body notions of quantum scars remains therefore incomplete. Here, we find the first quantum many-body scars originating from UPOs of a chaotic phase space. Remarkably, these states verify the eigenstate thermalization hypothesis, and we thus refer to them as thermal quantum many-body scars. While they do not preclude thermalization, their spectral structure featuring approximately equispaced towers of states yields an anomalous oscillatory dynamics preceding thermalization for wave packets initialized on an UPO. Remarkably, our model hosts both types of scars, thermal and nonthermal, and allows us to study the crossover between the two. Our work illustrates the fundamental principle of classical-quantum correspondence in a many-body system and its limitations.

Department(s)

Physics

International Standard Serial Number (ISSN)

2469-9969; 2469-9950

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 American Physical Society, All rights reserved.

Publication Date

01 Oct 2024

Included in

Physics Commons

Share

 
COinS