Calphad Modeling of Κ- Carbide Dual Ordering in Fe-Al-C Ternary Alloys

Abstract

A novel four-sublattice model for the κ phase, denoted as (Fe, Al)3(Fe, Al)1(C, Va)1(C, Va)3 was proposed to improve the thermodynamic prediction, such as equilibrium composition, phase stability of κ-carbide in Fe-Al-C system. The sublattice model explains the transformation from the disordered FCC solid solution to the ordered κ-carbide via concurrent ordering of substitutional and interstitial atoms. The dual ordering model can restrict the irregular contribution of configurational entropy arising at 20 at% C composition, which is an issue with the existing thermodynamic databases. For the CALPHAD assessment, κ-carbide was considered as a single, individual phase that is in equilibrium with the liquid, austenite (γ), ferrite (α) or other intermetallic and carbide phases in the Fe-Al-C system. The formation energy calculated from density functional theory (DFT) showed that Fe3Al–L12 phase is energetically more favorable than the Fe3AlC–E21 phase, and C atoms in sublattice IV are not energetically favorable at all. The assessed parameters provided better accuracy than the existing database in the calculations of isothermal sections, liquidus projection, invariant reactions, and low-temperature phase compositions. The model is highly suitable for the low temperature (<800 °C) phase predictions. Thus, the improved Fe-Al-C model lays the foundation for the thermodynamic and kinetic studies of κ-carbide for designing new Fe-Mn-Al-C alloys and optimizing the heat treatment processes.

Department(s)

Physics

Second Department

Materials Science and Engineering

Comments

Missouri University of Science and Technology, Grant OAC-1919789

Keywords and Phrases

Ab initio; CALPHAD; Density functional theory; Fe-Al-C; Ternary database; Thermodynamic model; κ-carbide

International Standard Serial Number (ISSN)

0364-5916

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2024 Elsevier, All rights reserved.

Publication Date

01 Dec 2024

Share

 
COinS