Abstract
We show that the interplay between geometric criticality and dynamical fluctuations leads to a novel universality class of the contact process on a randomly diluted lattice. The nonequilibrium phase transition across the percolation threshold of the lattice is characterized by unconventional activated (exponential) dynamical scaling and strong Griffiths effects. We calculate the critical behavior in two and three space dimensions, and we also relate our results to the recently found infinite-randomness fixed point in the disordered one-dimensional contact process.
Recommended Citation
T. Vojta and M. Y. Lee, "Nonequilibrium Phase Transition on a Randomly Diluted Lattice," Physical Review Letters, American Physical Society (APS), Jan 2006.
The definitive version is available at https://doi.org/10.1103/PhysRevLett.96.035701
Department(s)
Physics
Sponsor(s)
National Science Foundation (U.S.)
Research Corporation
University of Missouri Research Board
Keywords and Phrases
Fluctuations; Phase Transformations; Lattice dynamics; Percolation
International Standard Serial Number (ISSN)
0031-9007
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2006 American Physical Society (APS), All rights reserved.
Publication Date
01 Jan 2006