Abstract
The statics, stability, and dynamical properties of dark-bright soliton pairs are investigated here, motivated by applications in a homogeneous two-component repulsively interacting Bose-Einstein condensate. One of the intraspecies interaction coefficients is used as the relevant parameter controlling the deviation from the integrable Manakov limit. Two different families of stationary states are identified consisting of dark-bright solitons that are either antisymmetric (out-of-phase) or asymmetric (mass imbalanced) with respect to their bright soliton. Both of the above dark-bright configurations coexist at the integrable limit of equal intra and interspecies repulsions and are degenerate in that limit. However, they are found to bifurcate from it in a transcritical bifurcation. This bifurcation interchanges the stability properties of the bound dark-bright pairs rendering the antisymmetric states unstable and the asymmetric ones stable past the associated critical point (and vice versa before it). Finally, on the dynamical side, it is found that large kinetic energies and thus rapid soliton collisions are essentially unaffected by the intraspecies variation, while cases involving near equilibrium states or breathing dynamics are significantly modified under such a variation.
Recommended Citation
G. C. Katsimiga et al., "Dark-Bright Soliton Pairs: Bifurcations And Collisions," Physical Review A, vol. 97, no. 4, article no. 43623, American Physical Society, Apr 2018.
The definitive version is available at https://doi.org/10.1103/PhysRevA.97.043623
Department(s)
Physics
International Standard Serial Number (ISSN)
2469-9934; 2469-9926
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2024 American Physical Society, All rights reserved.
Publication Date
23 Apr 2018
Comments
National Science Foundation, Grant NSF-DMS-1614623