Abstract
We Observe Experimentally The Spontaneous Formation Of Star-Shaped Surface Patterns In Driven Bose-Einstein Condensates. Two-Dimensional Star-Shaped Patterns With L-Fold Symmetry, Ranging From Quadrupole (L=2) To Heptagon Modes (L=7), Are Parametrically Excited By Modulating The Scattering Length Near The Feshbach Resonance. An Effective Mathieu Equation And Floquet Analysis Are Utilized, Relating The Instability Conditions To The Dispersion Of The Surface Modes In A Trapped Superfluid. Identifying The Resonant Frequencies Of The Patterns, We Precisely Measure The Dispersion Relation Of The Collective Excitations. The Oscillation Amplitude Of The Surface Excitations Increases Exponentially During The Modulation. We Find That Only The L=6 Mode Is Unstable Due To Its Emergent Coupling With The Dipole Motion Of The Cloud. Our Experimental Results Are In Excellent Agreement With The Mean-Field Framework. Our Work Opens A New Pathway For Generating Higher-Lying Collective Excitations With Applications, Such As The Probing Of Exotic Properties Of Quantum Fluids And Providing A Generation Mechanism Of Quantum Turbulence.
Recommended Citation
K. Kwon and K. Mukherjee and S. J. Huh and K. Kim and S. I. Mistakidis and D. K. Maity and P. G. Kevrekidis and S. Majumder and P. Schmelcher and J. Y. Choi, "Spontaneous Formation Of Star-Shaped Surface Patterns In A Driven Bose-Einstein Condensate," Physical Review Letters, vol. 127, no. 11, article no. 113001, American Physical Society, Sep 2021.
The definitive version is available at https://doi.org/10.1103/PhysRevLett.127.113001
Department(s)
Physics
International Standard Serial Number (ISSN)
1079-7114; 0031-9007
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2024 American Physical Society, All rights reserved.
Publication Date
10 Sep 2021
PubMed ID
34558915
Comments
Universität Hamburg, Grant 1809074