Abstract

We Address The Existence And Dynamics Of One-Dimensional Harmonically Confined Quantum Droplets Appearing In Two-Component Mixtures By Deploying A Nonperturbative Approach. We Find That, In Symmetric Homonuclear Settings, Beyond-Lee-Huang-Yang Correlations Result In Flat-Top Droplet Configurations For Either Decreasing Intercomponent Attraction Or Larger Atom Number. Asymmetric Mixtures Feature Spatial Mixing Among The Involved Components With The More Strongly Interacting Or Heavier One Exhibiting Flat-Top Structures. Applying Quenches On The Harmonic Trap We Trigger The Lowest-Lying Collective Droplet Excitations. The Interaction-Dependent Breathing Frequency, Being Slightly Reduced In The Presence Of Correlations, Shows A Decreasing Trend For Stronger Attractions. Semianalytical Predictions Are Also Obtained Within The Lee-Huang-Yang Framework. For Relatively Large Quench Amplitudes The Droplet Progressively Delocalizes And Higher-Lying Motional Excitations Develop In Its Core. Simultaneously, Enhanced Intercomponent Entanglement And Long-Range Two-Body Intracomponent Correlations Arise. In Sharp Contrast, The Dipole Motion Remains Robust Irrespective Of The System Parameters. Species-Selective Quenches Lead To A Correlation-Induced Dephasing Of The Droplet Or To Irregular Dipole Patterns Due To Intercomponent Collisions.

Department(s)

Physics

Comments

National Science Foundation, Grant PHY-1748958

International Standard Serial Number (ISSN)

2469-9934; 2469-9926

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 American Physical Society, All rights reserved.

Publication Date

01 Feb 2023

Included in

Physics Commons

Share

 
COinS