Abstract

We investigate the ground state and dynamics of one-dimensional spin-orbit coupled (SOC) quantum droplets within the extended Gross-Pitaevskii approach. As the SOC wave number increases, stripe droplet patterns emerge, with a flat-top background, for larger particle numbers. The surface energy decays following a power-law with respect to the interactions. At small SOC wave numbers, a transition from Gaussian to flat-top droplets occurs for either a larger number of atoms or reduced intercomponent attraction. The excitation spectrum shows that droplets for relatively small SOC wave numbers are stable, otherwise stripe droplets feature instabilities as a function of the particle number or the interactions. We also witness rich droplet dynamical features using velocity imprinting and abrupt changes in the intercomponent interaction or the SOC parameters. Characteristic responses include breathing oscillations, expansion, symmetric and asymmetric droplet fragmentation, admixtures of single and stripe droplet branches, and erratic spatial distributions suggesting the triggering of relevant instabilities. Our results reveal the controlled dynamical generation and stability properties of stripe droplets that should be detectable in current cold-atom experiments.

Department(s)

Physics

Comments

National Science Foundation, Grant YS304023964

International Standard Serial Number (ISSN)

2469-9934; 2469-9926

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 American Physical Society, All rights reserved.

Publication Date

01 Jan 2024

Included in

Physics Commons

Share

 
COinS