Abstract

We have measured and calculated fully differential cross sections (FDCS) for dissociative capture in 75-keV p+H2 collisions. FDCS were analyzed in the kinetic energy release (KER) ranges 0 to 2.1 eV and 4 to 7 eV for two different molecular orientations. In the latter range, dissociation is dominated by electronic excitation to the 2pπu state. Here, we observed two-center interference for an orientation in the plane perpendicular to the initial beam axis and parallel to the transverse momentum transfer. The interference pattern is afflicted with a constant phase shift of π. In the range KER=0 to 2.1 eV, dissociation is dominated by vibrational excitation. Here, we observed structures in the KER dependence, which we interpret as interference between two different paths of the molecular fragments during the dissociation.

Department(s)

Physics

Comments

National Science Foundation, Grant PHY-2011307

International Standard Serial Number (ISSN)

2469-9934; 2469-9926

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 American Physical Society, All rights reserved.

Publication Date

01 Jan 2024

Included in

Physics Commons

Share

 
COinS