"Algebraic Approach To Relativistic Landau Levels In The Symmetric Gaug" by Ulrich D. Jentschura
 

Abstract

We use an algebraic approach to the calculation of Landau levels for a uniform magnetic field in the symmetric gauge with a vector potential A→=12(B→xr→), where B→ is assumed to be constant. The magnetron quantum number constitutes the degeneracy index. An overall complex phase of the wave function, given in terms of Laguerre polynomials, is a consequence of the algebraic structure. The relativistic generalization of the treatment leads to fully relativistic bispinor Landau levels in the symmetric gauge, in a representation which writes the relativistic states in terms of their nonrelativistic limit, and an algebraically accessible lower bispinor component. Negative-energy states and the massless limit are discussed. The relativistic states can be used for a number of applications, including the calculation of higher-order quantum electrodynamic binding corrections to the energies of quantum cyclotron levels.

Department(s)

Physics

Publication Status

Open Access

Comments

National Science Foundation, Grant PHY–2110294

International Standard Serial Number (ISSN)

2470-0029; 2470-0010

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 American Physical Society, All rights reserved.

Publication Date

01 Jul 2023

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 5
  • Usage
    • Downloads: 41
    • Abstract Views: 4
  • Captures
    • Readers: 11
see details

Included in

Physics Commons

Share

 
COinS
 
 
 
BESbswy