Second-Order Distorted Wave Calculation for Electron Impact Ionization of Hydrogen

Abstract

The triple differential cross sections for ionization of atomic hydrogen by electron impact are analysed in the case of coplanar, asymmetric geometry within the framework of second-order distorted wave theory. Detailed calculations are performed without making any approximations (other than numerical) in the evaluation of the second-order amplitude. The present results are compared with experimental measurements and other theoretical calculations for incident energies of 250, 150 and 54.4 eV. It is found that the second-order calculations represent a marked improvement over the results obtained from first-order theories for impact energies of 150 eV and higher. The close agreement between the present second-order plane wave calculation and those of Byron et al calculated using the closure approximation at an incident energy of 250 eV implies that the closure approximation is valid for this energy. The large difference between the present second-order distorted wave calculations and experiment at an incident energy of 54.4 eV suggests that higher order effects are important for incident energies less than 100 eV.

Department(s)

Physics

Sponsor(s)

National Science Foundation (U.S.)

Keywords and Phrases

Electron Impact Ionization; Second Order Amplitude; Triple Differential Cross Sections

International Standard Serial Number (ISSN)

0953-4075

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2004 Institute of Physics - IOP Publishing, All rights reserved.

Publication Date

01 Jan 2004

Share

 
COinS