Abstract

Cross sections differential in the scattering angle of the projectile are presented for electron capture summed over all states and to the 2s, 2p, 3s, 3p, 4s, and 4p states of hydrogen in 25-, 50-, and 100-keV proton-helium collisions. The classical-trajectory Monte Carlo (CTMC) technique was employed for these calculations as well as to compute total cross sections as a function of impact energy. The latter are compared with experiment to display the behavior of the integral state-selective cross sections in this energy regime. Detailed comparison is also made between the calculated angular differential cross sections and the experimental measurements of Martin et al. [Phys. Rev. A 23, 285 (1981)] for capture summed over all states and of Seely et al. [Phys. Rev. A 45, R1287 (1992)] for capture to the 2p state. Very good overall agreement is found. Regarding the cross section for capture summed over all states, an improved agreement is demonstrated by using an alternate representation of the initial state in the CTMC method, which improves the electronic radial distribution, but which cannot presently be applied to state-selective determinations. © 1992 The American Physical Society.

Department(s)

Physics

International Standard Serial Number (ISSN)

1050-2947

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 American Physical Society, All rights reserved.

Publication Date

01 Jan 1992

Included in

Physics Commons

Share

 
COinS