Abstract
We report investigations of one- and two-electron processes in the collisions of 0.9-keV/u to 60-keV/u (vp=0.19-1.55 a.u.) Ar16+ ions with He targets. The cross sections for these processes were measured by observing the final charges of the Ar ions and the recoiling target ions in coincidence. The average Q values for the capture channels were determined by measuring the longitudinal momenta of the recoiling target ions. Single capture (SC) is the dominant process and is relatively independent of the projectile energy. The two-electron transfer-ionization (TI) process is the next largest and slowly increases with projectile energy. The Q values for both SC and TI decrease with increasing projectile energy. Our data thereby suggest that electrons are captured into less tightly bound states as the collision velocity is increased. Both double capture and single ionization are much smaller and fairly independent of the projectile energy. The energy independence of SI is somewhat surprising as our energy range spans the region of the target electron velocity where ionization would be expected to increase. Our analysis suggests that the ionization process is being suppressed by SC and TI processes. © 1993 The American Physical Society.
Recommended Citation
W. Wu et al., "Velocity Dependence Of One- And Two-electron Processes In Intermediate-velocity Ar16++He Collisions," Physical Review A, vol. 48, no. 5, pp. 3617 - 3625, American Physical Society, Jan 1993.
The definitive version is available at https://doi.org/10.1103/PhysRevA.48.3617
Department(s)
Physics
International Standard Serial Number (ISSN)
1050-2947
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 American Physical Society, All rights reserved.
Publication Date
01 Jan 1993