Abstract

A theory has been formulated to characterize charge-transfer collisions in the presence of an external laser field. The molecular-state-expansion method is used to describe the scattering process within the impact-parameter formalism. Electron translation factors are included in the molecular-state expansion so that the scattering wave function satisfies the correct boundary conditions. The theory is applied to the process K++NaK+Na+. In addition, we have made a detailed analysis of laser-assisted charge transfer for low-energy collisions. In this case, a Landau-Zener formula can be derived which shows that the cross section increases with decreasing incident energy. In general the laser coupling is dominant in the low-energy region, while the dynamical coupling becomes important as the collision energy increases. © 1985 The American Physical Society.

Department(s)

Physics

International Standard Serial Number (ISSN)

1050-2947

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 American Physical Society, All rights reserved.

Publication Date

01 Jan 1985

Included in

Physics Commons

Share

 
COinS