Abstract
We conduct intensity mapping to probe for extended diffuse Lyα emission around Lyα emitters (LAEs) at z ∼2-7, exploiting very deep (∼26 mag at 5σ) and large-area (∼4.5 deg2) Subaru/Hyper Suprime-Cam narrowband (NB) images and large LAE catalogs consisting of a total of 1540 LAEs at z = 2.2, 3.3, 5.7, and 6.6 obtained by the HSC-SSP and CHORUS projects. We calculate the spatial correlations of these LAEs with ∼1-2-billion-pixel flux values of the NB images, deriving the average Lyα surface brightness (SBLyα ) radial profiles around the LAEs. By carefully estimating systematics such as fluctuations of sky background and point-spread functions, we detect Lyα emission at 100-1000 comoving kpc around z = 3.3 and 5.7 LAEs at the 3.2σ and 3.7σ levels, respectively, and tentatively (=2.0σ) at z = 6.6. The emission is as diffuse as ∼10-20-10-19 erg s-1 cm-2 arcsec-2 and extended beyond the virial radius of a dark matter halo with a mass of 1011 M. While the observed SBLyα profiles have similar amplitudes at z = 2.2-6.6 within the uncertainties, the intrinsic SBLyα profiles (corrected for the cosmological dimming effect) increase toward high redshifts. This trend may be explained by increasing hydrogen gas density due to the evolution of the cosmic volume. Comparisons with theoretical models suggest that extended Lyα emission around an LAE is powered by resonantly scattered Lyα photons in the CGM and IGM that originate from the inner part of the LAE and/or neighboring galaxies around the LAE.
Recommended Citation
S. Kikuchihara and Y. Harikane and M. Ouchi and Y. Ono and T. Shibuya and R. Itoh and R. Kakuma and A. K. Inoue and H. Kusakabe and K. Shimasaku and R. Momose and Y. Sugahara and S. Kikuta and S. Saito, "Silverrush. Xii. Intensity Mapping for Ly Α Emission Extending over 100-1000 Comoving Kpc Around Z ∼2-7 Laes with Subaru Hsc-Ssp and Chorus Data," Astrophysical Journal, vol. 931, no. 2, article no. 97, American Astronomical Society; IOP Publishing, Jun 2022.
The definitive version is available at https://doi.org/10.3847/1538-4357/ac69de
Department(s)
Physics
International Standard Serial Number (ISSN)
1538-4357; 0004-637X
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Jun 2022
Comments
National Science Foundation, Grant AST-1238877