Abstract
We study the absorbing-state phase transition in the one-dimensional contact process under the combined influence of spatial and temporal random disorders. We focus on situations in which the spatial and temporal disorders decouple. Couched in the language of epidemic spreading, this means that some spatial regions are, at all times, more favorable than others for infections, and some time periods are more favorable than others independent of spatial location. We employ a generalized Harris criterion to discuss the stability of the directed percolation universality class against such disorder. We then perform large-scale Monte Carlo simulations to analyze the critical behavior in detail. We also discuss how the Griffiths singularities that accompany the nonequilibrium phase transition are affected by the simultaneous presence of both disorders.
Recommended Citation
X. Ye and T. Vojta, "Contact Process with Simultaneous Spatial and Temporal Disorder," Physical Review E, vol. 106, no. 7, article no. 044102, American Physical Society, Oct 2022.
The definitive version is available at https://doi.org/10.1103/PhysRevE.106.044102
Department(s)
Physics
International Standard Serial Number (ISSN)
2470-0053; 2470-0045
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2023 American Physical Society, All rights reserved.
Publication Date
01 Oct 2022
PubMed ID
36397466
Comments
National Science Foundation, Grant DMR-1828489