Effect of Interfacial Atomic Mixing on the Thermal Conductivity of Multi-Layered Stacking Structure


Multi-layered stacking structures and atomic mixing interfaces were constructed. The effects of various factors on the thermal conductivity of different lattice structures were studied by non-equilibrium molecular dynamics simulations, including the number of atomic mixing layers, temperature, total length of the system, and period length. The results showed that the mixing of two and four layers of atoms can improve the thermal conductivities of the multi-layer structure with a small total length due to a phonon "bridge"mechanism. When the total length of the system is large, the thermal conductivity of the multi-layer structure with atomic mixing interfaces decreases significantly compared with that of the perfect interfaces. The interfacial atom mixing destroys the phonon coherent transport in the multi-layer structure and decreases the thermal conductivity to some extent. The thermal conductivity of the multi-layer structure with perfect interfaces is significantly affected by temperature, whereas the thermal conductivity of the multi-layer structures with atomic mixing is less sensitive to temperature.




The authors are grateful for funding from the National Natural Science Foundation of China (NNSFC) (No. 52076080), the Natural Science Foundation of Hebei Province (No. E2020502011), and the Fundamental Research Funds for the Central Universities (No. 2020MS105).

International Standard Serial Number (ISSN)

1089-7550; 0021-8979

Document Type

Article - Journal

Document Version


File Type





© 2022 Author(s). Published under an exclusive license by AIP Publishing.

Publication Date

14 Feb 2022