Abstract

The temperature-pressure phase diagram of the ferromagnet LaCrGe3 is determined for the first time from a combination of magnetization, muon-spin-rotation, and electrical resistivity measurements. The ferromagnetic phase is suppressed near 2.1 GPa, but quantum criticality is avoided by the appearance of a magnetic phase, likely modulated, AFMQ. Our density functional theory total energy calculations suggest a near degeneracy of antiferromagnetic states with small magnetic wave vectors Q allowing for the potential of an ordering wave vector evolving from Q = 0 to finite Q, as expected from the most recent theories on ferromagnetic quantum criticality. Our findings show that LaCrGe3 is a very simple example to study this scenario of avoided ferromagnetic quantum criticality and will inspire further study on this material and other itinerant ferromagnets.

Department(s)

Physics

Comments

U.S. Department of Energy, Grant 149486

International Standard Serial Number (ISSN)

1079-7114; 0031-9007

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2016 American Physical Society (APS), All rights reserved.

Publication Date

13 Jul 2016

Included in

Physics Commons

Share

 
COinS