We present a de Haas-van Alphen study of the Fermi surface of the low-temperature antiferromagnet CeZn11 and its nonmagnetic analog LaZn11, measured by torque magnetometry up to fields of 33T and at temperatures down to 320mK. Both systems possess similar de Haas-van Alphen frequencies, with three clear sets of features -- ranging from 50T to 4kT -- corresponding to three bands of a complex Fermi surface, with an expected fourth band also seen weakly in CeZn11. The effective masses of the charge carriers are very light ( < 1me) in LaZn11 but a factor of 2-4 larger in CeZn11, indicative of stronger electronic correlations. We perform detailed density functional theory (DFT) calculations for CeZn11 and find that only DFT+U calculations with U = 1.5eV, which localize the 4f states, provide a good match to the measured de Haas-van Alphen frequencies, once the presence of magnetic breakdown orbits is also considered. Our study suggests that the Fermi surface of CeZn11 is very close to that of LaZn11 being dominated by Zn 3d, as the Ce 4f states are localized and have little influence on its electronic structure, however, they are responsible for its magnetic order and contribute to enhance electronic correlations.




Engineering and Physical Sciences Research Council, Grant EP/I004475/1

International Standard Serial Number (ISSN)

2469-9969; 2469-9950

Document Type

Article - Journal

Document Version

Final Version

File Type





© 2016 American Physical Society (APS), All rights reserved.

Publication Date

02 Dec 2016

Included in

Physics Commons