Abstract

The defect relaxation volumes obtained from density-functional theory (DFT) calculations of charged vacancies and interstitials are much larger than their neutral counterparts, seemingly unphysically large. We focus on UO2 as our primary material of interest, but also consider Si and GaAs to reveal the generality of our results. In this work, we investigate the possible reasons for this and revisit the methods that address the calculation of charged defects in periodic DFT. We probe the dependence of the proposed energy corrections to charged defect formation energies on relaxation volumes and find that corrections such as potential alignment remain ambiguous with regards to its contribution to the charged defect relaxation volume. We also investigate the volume for the net neutral defect reactions comprising individual charged defects, and find that the aggregate formation volumes have reasonable magnitudes. This work highlights the issue that, as is well-known for defect formation energies, the defect formation volumes depend on the choice of reservoir. We show that considering the change in volume of the electron reservoir in the formation reaction of the charged defects, analogous to how volumes of atoms are accounted for in defect formation volumes, can renormalize the formation volumes of charged defects such that they are comparable to neutral defects. This approach enables the description of the elastic properties of isolated charged defects within an overall neutral material.

Department(s)

Physics

Research Center/Lab(s)

Center for High Performance Computing Research

Comments

This research was funded by Department of Energy, Office of Nuclear Energy, Nuclear Energy University Program, grant number 10-2258, and the Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.

Keywords and Phrases

Defects; Density Functional Theory; Dipole Tensor; Elasticity; Relaxation Volume; Urania

International Standard Serial Number (ISSN)

2076-3417; 2076-3417

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2019 The Authors, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Dec 2019

Included in

Physics Commons

Share

 
COinS