Abstract
The defect relaxation volumes obtained from density-functional theory (DFT) calculations of charged vacancies and interstitials are much larger than their neutral counterparts, seemingly unphysically large. We focus on UO2 as our primary material of interest, but also consider Si and GaAs to reveal the generality of our results. In this work, we investigate the possible reasons for this and revisit the methods that address the calculation of charged defects in periodic DFT. We probe the dependence of the proposed energy corrections to charged defect formation energies on relaxation volumes and find that corrections such as potential alignment remain ambiguous with regards to its contribution to the charged defect relaxation volume. We also investigate the volume for the net neutral defect reactions comprising individual charged defects, and find that the aggregate formation volumes have reasonable magnitudes. This work highlights the issue that, as is well-known for defect formation energies, the defect formation volumes depend on the choice of reservoir. We show that considering the change in volume of the electron reservoir in the formation reaction of the charged defects, analogous to how volumes of atoms are accounted for in defect formation volumes, can renormalize the formation volumes of charged defects such that they are comparable to neutral defects. This approach enables the description of the elastic properties of isolated charged defects within an overall neutral material.
Recommended Citation
A. Goyal et al., "The Conundrum of Relaxation Volumes in First-Principles Calculations of Charged Defects in UO₂," Applied Sciences (Switzerland), vol. 9, no. 24, MDPI AG, Dec 2019.
The definitive version is available at https://doi.org/10.3390/app9245276
Department(s)
Physics
Research Center/Lab(s)
Center for High Performance Computing Research
Keywords and Phrases
Defects; Density Functional Theory; Dipole Tensor; Elasticity; Relaxation Volume; Urania
International Standard Serial Number (ISSN)
2076-3417; 2076-3417
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2019 The Authors, All rights reserved.
Creative Commons Licensing
This work is licensed under a Creative Commons Attribution 4.0 License.
Publication Date
01 Dec 2019
Comments
This research was funded by Department of Energy, Office of Nuclear Energy, Nuclear Energy University Program, grant number 10-2258, and the Department of Energy Nuclear Energy Advanced Modeling and Simulation (NEAMS) program.