Abstract
Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes.
Recommended Citation
A. Albert et al., "Search for Multimessenger Sources of Gravitational Waves and High-Energy Neutrinos with Advanced LIGO during its First Observing Run, ANTARES, and IceCube," Astrophysical Journal, vol. 870, no. 2, Institute of Physics - IOP Publishing, Jan 2019.
The definitive version is available at https://doi.org/10.3847/1538-4357/aaf21d
Department(s)
Physics
Keywords and Phrases
gravitational waves; neutrinos
International Standard Serial Number (ISSN)
0004-637X; 1538-4357
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2019 The American Astronomical Society, All rights reserved.
Publication Date
01 Jan 2019