Abstract
We present baryon acoustic oscillation (BAO) scale measurements determined from the clustering of 1.2 million massive galaxies with redshifts 0.2 < z < 0.75 distributed over 9300 deg2, as quantified by their redshift-space correlation function. In order to facilitate these measurements, we define, describe, and motivate the selection function for galaxies in the final data release (DR12) of the SDSS III Baryon Oscillation Spectroscopic Survey (BOSS). This includes the observational footprint, masks for image quality and Galactic extinction, and weights to account for density relationships intrinsic to the imaging and spectroscopic portions of the survey. We simulate the observed systematic trends in mock galaxy samples and demonstrate that they impart no bias on BAO scale measurements and have a minor impact on the recovered statistical uncertainty. We measure transverse and radial BAO distance measurements in 0.2 < z < 0.5, 0.5 < z < 0.75, and (overlapping) 0.4 < z < 0.6 redshift bins. In each redshift bin, we obtain a precision that is 2.7 per cent or better on the radial distance and 1.6 per cent or better on the transverse distance. The combination of the redshift bins represents 1.8 per cent precision on the radial distance and 1.1 per cent precision on the transverse distance. This paper is part of a set that analyses the final galaxy clustering data set from BOSS. The measurements and likelihoods presented here are combined with others in Alam et al. to produce the final cosmological constraints from BOSS.
Recommended Citation
A. J. Ross et al., "The Clustering of Galaxies in the Completed SDSS-III Baryon Oscillation Spectroscopic Survey: Observational Systematics and Baryon Acoustic Oscillations in the Correlation Function," Monthly Notices of the Royal Astronomical Society, vol. 464, no. 1, pp. 1168 - 1191, Oxford University Press, Jan 2017.
The definitive version is available at https://doi.org/10.1093/mnras/stw2372
Department(s)
Physics
Keywords and Phrases
Cosmology: observations; Large-scale structure of Universe
International Standard Serial Number (ISSN)
0035-8711; 1365-2966
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2017 The Authors, All rights reserved.
Publication Date
01 Jan 2017