Abstract

A wide variety of astrophysical and cosmological sources are expected to contribute to a stochastic gravitational-wave background. Following the observations of GW150914 and GW151226, the rate and mass of coalescing binary black holes appear to be greater than many previous expectations. As a result, the stochastic background from unresolved compact binary coalescences is expected to be particularly loud. We perform a search for the isotropic stochastic gravitational-wave background using data from Advanced Laser Interferometer Gravitational Wave Observatory's (aLIGO) first observing run. The data display no evidence of a stochastic gravitational-wave signal. We constrain the dimensionless energy density of gravitational waves to be Ω0 < 1.7 x 10-7 with 95% confidence, assuming a flat energy density spectrum in the most sensitive part of the LIGO band (20-86 Hz). This is a factor of ∼33 times more sensitive than previous measurements. We also constrain arbitrary power-law spectra. Finally, we investigate the implications of this search for the background of binary black holes using an astrophysical model for the background.

Department(s)

Physics

Keywords and Phrases

Astrophysics; Bins; Flocculation; Gravitation; Gravitational effects; Interferometers; Laser interferometry; Stars; Stochastic systems; Black holes; Data display; Energy density; Energy density spectrum; Gravitational-wave signals; Laser interferometer gravitational-wave observatories; Power-law; Upper limits; Gravity waves

International Standard Serial Number (ISSN)

0031-9007

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2017 American Physical Society (APS), All rights reserved.

Publication Date

01 Mar 2017

Included in

Physics Commons

Share

 
COinS