Abstract
Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (∼10-1000 s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO's fifth science run, and GRB triggers from the Swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence-level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F < 3.5 ergs cm-2 to F < 1200 ergs cm-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ≈33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10x better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.
Recommended Citation
J. Aasi et al., "Search for Long-Lived Gravitational-Wave Transients Coincident with Long Gamma-Ray Bursts," Physical Review D - Particles, Fields, Gravitation and Cosmology, vol. 88, no. 12, American Physical Society (APS), Dec 2013.
The definitive version is available at https://doi.org/10.1103/PhysRevD.88.122004
Department(s)
Physics
International Standard Serial Number (ISSN)
1550-7998
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2013 American Physical Society (APS), All rights reserved.
Publication Date
01 Dec 2013