Abstract

We have calculated triply differential cross sections (TDCS) and doubly differential cross sections (DDCS) for single ionization of H2 by 75-keV proton impact using the molecular three-body distorted-wave-eikonal initial-state (M3DW-EIS) approach. Previously published measured DDCS (differential in the projectile scattering angle and integrated over the ejected electron angles) found pronounced structures at relatively large angles that were interpreted as an interference resulting from the two-centered potential of the molecule. Theory treating H2 as atomic H multiplied by a molecular interference factor only predicts the observed structure when assumptions are made about the molecular orientation. Here we apply the M3DW-EIS method, which does not rely on such an ad hoc approach, but rather treats the interference from first principles.

Department(s)

Physics

Keywords and Phrases

Ad hoc approach; Differential cross section; Distorted waves; Doubly differential cross sections; Eikonal; Ejected electrons; First-principles; Molecular interference; Proton impact; Scattering angles; Single ionization; Electrochemical corrosion; Impact ionization; Protons; Molecular orientation

International Standard Serial Number (ISSN)

1050-2947

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2011 American Physical Society (APS), All rights reserved.

Publication Date

01 Mar 2011

Included in

Physics Commons

Share

 
COinS