Abstract
The electronic properties of single- and multication transparent conducting oxides (TCOs) are investigated using first-principles density-functional approach. A detailed comparison of the electronic band structure of stoichiometric and oxygen deficient In2 O3, α, and β -Ga2 O3, rock salt and wurtzite ZnO, and layered InGaZnO4 reveals the role of the following factors which govern the transport and optical properties of these TCO materials: (i) the crystal symmetry of the oxides, including both the oxygen coordination and the long-range structural anisotropy; (ii) the electronic configuration of the cation(s), specifically, the type of orbital(s)- s, p, or d -which form the conduction band; and (iii) the strength of the hybridization between the cation's states and the p states of the neighboring oxygen atoms. The results not only explain the experimentally observed trends in the electrical conductivity in the single-cation TCO, but also demonstrate that multicomponent oxides may offer a way to overcome the electron localization bottleneck which limits the charge transport in wide band-gap main-group metal oxides. Further, the advantages of aliovalent substitutional doping-an alternative route to generate carriers in a TCO host-are outlined based on the electronic band structure calculations of Sn, Ga, Ti, and Zr-doped InGaZnO4. We show that the transition metal dopants offer a possibility to improve conductivity without compromising the optical transmittance.
Recommended Citation
J. E. Medvedeva and C. L. Hettiarachchi, "Tuning the Properties of Complex Transparent Conducting Oxides: Role of Crystal Symmetry, Chemical Composition, and Carrier Generation," Physical review B: Condensed matter and materials physics, vol. 81, no. 12, American Physical Society (APS), Mar 2010.
The definitive version is available at https://doi.org/10.1103/PhysRevB.81.125116
Department(s)
Physics
International Standard Serial Number (ISSN)
1098-0121
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2010 American Physical Society (APS), All rights reserved.
Publication Date
01 Mar 2010