Native Point Defects in Multicomponent Transparent Conducting Oxides

Abstract

The formation of native point defects in layered multicomponent InAMO4 oxides with A 3+=Al or Ga, and M 2+=Ca, Mg, or Zn, is investigated using first-principles density functional calculations. We calculated the formation energy of acceptor (cation vacancies, acceptor antisites) and donor (oxygen vacancy, donor antisites) defects within the structurally and chemically distinct layers of InAMO4 oxides. We find that the antisite donor defect, in particular, the A atom substituted on the M atom site (A M) in InAMO4 oxides, have lower formation energies, hence, higher concentrations, as compared to those of the oxygen vacancy which is know to be the major donor defect in binary constituent oxides. The major acceptor (electron killer) defects are cation vacancies except for InAlCaO4 where the antisite CaAl is the most abundant acceptor defect. The results of the defect formation analysis help explain the changes in the observed carrier concentrations as a function of chemical composition in InAMO4, and also why the InAlZnO4 samples are unstable under a wide range of growing conditions.

Meeting Name

MRS Fall Meeting (2014: Nov. 30-Dec. 5, Boston, MA)

Department(s)

Physics

Keywords and Phrases

Defects; Electronic Structure; Oxide

International Standard Serial Number (ISSN)

0021-9371

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2014 Cambridge University Press, All rights reserved.

Publication Date

01 Nov 2014

Share

 
COinS