Native Point Defects in Multicomponent Transparent Conducting Oxides
Abstract
The formation of native point defects in layered multicomponent InAMO4 oxides with A 3+=Al or Ga, and M 2+=Ca, Mg, or Zn, is investigated using first-principles density functional calculations. We calculated the formation energy of acceptor (cation vacancies, acceptor antisites) and donor (oxygen vacancy, donor antisites) defects within the structurally and chemically distinct layers of InAMO4 oxides. We find that the antisite donor defect, in particular, the A atom substituted on the M atom site (A M) in InAMO4 oxides, have lower formation energies, hence, higher concentrations, as compared to those of the oxygen vacancy which is know to be the major donor defect in binary constituent oxides. The major acceptor (electron killer) defects are cation vacancies except for InAlCaO4 where the antisite CaAl is the most abundant acceptor defect. The results of the defect formation analysis help explain the changes in the observed carrier concentrations as a function of chemical composition in InAMO4, and also why the InAlZnO4 samples are unstable under a wide range of growing conditions.
Recommended Citation
A. Murat and J. E. Medvedeva, "Native Point Defects in Multicomponent Transparent Conducting Oxides," Journal of British Studies, vol. 1633, no. 3, pp. 37 - 42, Cambridge University Press, Nov 2014.
The definitive version is available at https://doi.org/10.1557/opl.2014.144
Meeting Name
MRS Fall Meeting (2014: Nov. 30-Dec. 5, Boston, MA)
Department(s)
Physics
Keywords and Phrases
Defects; Electronic Structure; Oxide
International Standard Serial Number (ISSN)
0021-9371
Document Type
Article - Conference proceedings
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2014 Cambridge University Press, All rights reserved.
Publication Date
01 Nov 2014