Non-Dispersive Carrier Transport in Molecularly Doped Polymers and the Convection-Diffusion Equation
Abstract
We reinvestigate the applicability of the concept of trap-free carrier transport in molecularly doped polymers and the possibility of realistically describing time-of-flight (TOF) current transients in these materials using the classical convection-diffusion equation (CDE). The problem is treated as rigorously as possible using boundary conditions appropriate to conventional time of flight experiments. Two types of pulsed carrier generation are considered. In addition to the traditional case of surface excitation, we also consider the case where carrier generation is spatially uniform. In our analysis, the front electrode is treated as a reflecting boundary, while the counter electrode is assumed to act either as a neutral contact (not disturbing the current flow) or as an absorbing boundary at which the carrier concentration vanishes. As expected, at low fields transient currents exhibit unusual behavior, as diffusion currents overwhelm drift currents to such an extent that it becomes impossible to determine transit times (and hence, carrier mobilities). At high fields, computed transients are more like those typically observed, with well-defined plateaus and sharp transit times. Careful analysis, however, reveals that the non-dispersive picture, and predictions of the CDE contradict both experiment and existing disorder-based theories in important ways, and that the CDE should be applied rather cautiously, and even then only for engineering purposes.
Recommended Citation
A. P. Tyutnev et al., "Non-Dispersive Carrier Transport in Molecularly Doped Polymers and the Convection-Diffusion Equation," Chemical Physics, vol. 457, pp. 122 - 128, Elsevier, Aug 2015.
The definitive version is available at https://doi.org/10.1016/j.chemphys.2015.06.001
Department(s)
Physics
Keywords and Phrases
Green function; Multiple trapping model; Theory versus experiment
International Standard Serial Number (ISSN)
0301-0104
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2015 Elsevier, All rights reserved.
Publication Date
01 Aug 2015