We apply the frozen-correlation approximation (FCA) to analyze double ionization of helium by energetic highly charged ions. In this model the double ionization amplitude is represented in terms of single ionization amplitudes, which we evaluate within the continuum distorted wave-eikonal initial state (CDW-EIS) approach. Correlation effects are incorporated in the initial and final states, but are neglected during the time the collision process takes place. We implement the FCA using the Monte Carlo event generator technique, which allows us to generate theoretical event files and to compare theory and experiment using the same analysis tools. The comparison with previous theoretical results and with experimental data demonstrates, on the one hand, the validity of our earlier simple models to account for higher-order mechanisms, and, on the other hand, the robustness of the FCA.



Keywords and Phrases

Analysis tools; Collision process; Continuum distorted wave-eikonal initial state; Correlation effect; Double ionization; Experimental data; Final state; Higher order; Highly charged ions; Monte Carlo Event generators; Single ionization; Theoretical result; Distortion (waves); High energy physics; Impact ionization; Ion bombardment; Monte Carlo methods; Helium

International Standard Serial Number (ISSN)


Document Type

Article - Journal

Document Version

Final Version

File Type





© 2011 American Physical Society (APS), All rights reserved.

Publication Date

01 Sep 2011

Included in

Physics Commons