On the Derivation of Smoluchowski Equations with Corrections in the Classical Theory of Brownian Motion
Abstract
Differential equations governing the time evolution of distribution functions for Brownian motion in the full phase space were first derived independently by Klein and Kramers. From these so-called Fokker-Planck equations one may derive the reduced differential equations in coordinate space known as Smoluchowski equations. Many such derivations have previously been reported, but these either involved unnecessary assumptions or approximations, or were performed incompletely. We employ an iterative reduction scheme, free of assumptions, and calculate formally exact corrections to the Smoluchowski equations for many-particle systems with and without hydrodynamic interaction, and for a single particle in an external field. In the absence of hydrodynamic interaction, the lowest order corrections have been expressed explicitly in terms of the coordinate space distribution function. An additional application of the method is made to the reduction of the stress tensor used in evaluating the intrinsic viscosity of particles in solution. Most of the present work is based on classical Brownian motion theory, but brief consideration is given in an appendix to some recent developments regarding non-Markovian equations for Brownian motion.
Recommended Citation
G. Wilemski, "On the Derivation of Smoluchowski Equations with Corrections in the Classical Theory of Brownian Motion," Journal of Statistical Physics, vol. 14, no. 2, pp. 153 - 169, Kluwer Academic Publishers-Plenum Publishers, Feb 1976.
The definitive version is available at https://doi.org/10.1007/BF01011764
Department(s)
Physics
Keywords and Phrases
Brownian motion; diffusion; Fokker-Planck equation; hydrodynamic interaction; intrinsic viscosity; Smoluchowski equation
International Standard Serial Number (ISSN)
0022-4715
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1976 Kluwer Academic Publishers-Plenum Publishers, All rights reserved.
Publication Date
01 Feb 1976