Brownian Dynamics Simulations of an Order-Disorder Transition in Sheared Sterically Stabilized Colloidal Suspensions

Abstract

The shear thinning behavior of a statically stabilized nonaqueous colloidal suspension was investigated using nonequilibrium Brownian dynamics simulations of systems with 108 and 256 particles. At a volume fraction of 0.4, the suspension is thixotropic: it has a reversible shear thinning transition from a disordered state to an ordered, lamellar state with triangularly packed strings of particles. The time scale for the transition is set by the free particle diffusion constant. For the smaller system, the transition occurs gradually with increasing shear rate. For the larger system, the transition is sharp and discontinuous shear thinning is found.

Department(s)

Physics

International Standard Serial Number (ISSN)

0022-3654

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 1992 American Chemical Society (ACS), All rights reserved.

Publication Date

01 May 1992

Share

 
COinS