Abstract
We investigate the zero-temperature quantum phase transitions of the disordered three-color quantum Ashkin-Teller spin chain by means of large-scale Monte Carlo simulations. We find that the first-order phase transitions of the clean system are rounded by the quenched disorder. For weak intercolor coupling, the resulting emergent quantum critical point between the paramagnetic phase and the magnetically ordered Baxter phase is of infinite-randomness type and belongs to the universality class of the random transverse-field Ising model, as predicted by recent strong-disorder renormalization group calculations. We also find evidence for unconventional critical behavior in the case of strong intercolor coupling, even though an unequivocal determination of the universality class is beyond our numerical capabilities. We compare our results to earlier simulations, and we discuss implications for the classification of phase transitions in the presence of disorder.
Recommended Citation
A. K. Ibrahim and T. Vojta, "Monte Carlo Simulations of the Disordered Three-Color Quantum Ashkin-Teller Chain," Physical review B: Condensed matter and materials physics, vol. 95, no. 5, pp. 054403-1 - 054403-8, American Physical Society (APS), Feb 2017.
The definitive version is available at https://doi.org/10.1103/PhysRevB.95.054403
Department(s)
Physics
Research Center/Lab(s)
Center for High Performance Computing Research
International Standard Serial Number (ISSN)
1098-0121
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2017 American Physical Society (APS), All rights reserved.
Publication Date
01 Feb 2017