Anomalous Elasticity in a Disordered Layered XY Model

Abstract

We investigate the effects of layered quenched disorder on the behavior of planar magnets, superfluids and superconductors by performing large-scale Monte-Carlo simulations of a three-dimensional randomly layered XY model. Our data provide numerical evidence for the recently predicted anomalously elastic (sliding) intermediate phase between the conventional high-temperature and low-temperature phases. In this intermediate phase, the spin-wave stiffness perpendicular to the layers vanishes in the thermodynamic limit while the stiffness parallel to the layers as well as the spontaneous magnetization are nonzero. In addition, the susceptibility displays unconventional finite-size scaling properties. We compare our Monte-Carlo results with the theoretical predictions, and we discuss possible experiments in ultracold atomic gases, layered superconductors and in nanostructures.

Department(s)

Physics

Keywords and Phrases

Elasticity; Intelligent systems; Stiffness; Superconductivity; Three dimensional computer graphics; Thermodynamics; Superconducting materials; Finite size scaling; High temperature; Intermediate phase; Layered superconductor; Low temperature phasis; Monte Carlo Simulation; Numerical evidence; Quenched disorder; Spontaneous magnetization; Theoretical prediction; Thermodynamic limits; Ultracold atomic gas

International Standard Serial Number (ISSN)

0031-8949

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2012 Institute of Physics - IOP Publishing, All rights reserved.

Publication Date

01 Nov 2012

Share

 
COinS