Electronic Transport in Disordered Interacting Systems
Abstract
We numerically investigate the transport properties of disordered interacting electrons in three dimensions in the metallic as well as in the insulating phases. The disordered many-particle problem is modeled by the quantum Coulomb glass which contains a random potential, long-range unscreened Coulomb interactions and quantum hopping between different sites. We have recently developed the Hartree-Fock based diagonalization (HFD) method which amounts to diagonalizing the Hamiltonian in a suitably chosen energetically truncated basis. This method allows us to investigate comparatively large systems. Here we calculate the combined effect of disorder and interactions on the dissipative conductance. We find that the qualitative influence of the interactions on the conductance depends on the relative disorder strength. For strong disorder interactions can significantly enhance the transport while they suppress the conductance for weak disorder.
Recommended Citation
T. Vojta and F. Epperlein, "Electronic Transport in Disordered Interacting Systems," Annalen der Physik, vol. 7, no. 5-6, pp. 493 - 497, Wiley-Blackwell, Nov 1998.
The definitive version is available at https://doi.org/10.1002/(SICI)1521-3889(199811)7:5/6<493::AID-ANDP493>3.0.CO;2-Q
Department(s)
Physics
Keywords and Phrases
Anderson localization; Correlated electrons; Disorder; Interactions
International Standard Serial Number (ISSN)
0003-3804
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 1998 Wiley-Blackwell, All rights reserved.
Publication Date
01 Nov 1998