Abstract
The Coulomb glass, a model of interacting localized electrons in a random potential, exhibits a soft gap, the Coulomb gap, in the single-particle density of states (DOS) g(ε,T) close to the chemical potential µ. In this paper we investigate the Coulomb gap at finite temperatures T by means of a Monte Carlo method. We find that the Coulomb gap fills with increasing temperature. In contrast to previous results the temperature dependence is, however, much stronger than g(µ,T)~TD-1 as predicted analytically. It can be described by power laws with the exponents 1.75 ± 0.1 for the two-dimensional model and 2.7 ± 0.1 for the three-dimensional model. Nevertheless, the relation g(µ,T)~g(ε,T=0) with |ε - µ| = kBT seems to be valid, since energy dependence of the DOS at low temperatures has also been found to follow power laws with these exponents.
Recommended Citation
M. Sarvestani et al., "Coulomb Gap at Finite Temperatures," Physical Review B (Condensed Matter), vol. 52, no. 6, pp. R3820 - R3823, American Physical Society (APS), Aug 1995.
The definitive version is available at https://doi.org/10.1103/PhysRevB.52.R3820
Department(s)
Physics
International Standard Serial Number (ISSN)
0163-1829
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 1995 American Physical Society (APS), All rights reserved.
Publication Date
01 Aug 1995