Protecting Clean Critical Points by Local Disorder Correlations

Abstract

We show that a broad class of quantum critical points can be stable against locally correlated disorder even if they are unstable against uncorrelated disorder. Although this result seemingly contradicts the Harris criterion, it follows naturally from the absence of a random-mass term in the associated order parameter field theory. We illustrate the general concept with explicit calculations for quantum spin-chain models. Instead of the infinite-randomness physics induced by uncorrelated disorder, we find that weak locally correlated disorder is irrelevant. For larger disorder, we find a line of critical points with unusual properties such as an increase of the entanglement entropy with the disorder strength. We also propose experimental realizations in the context of quantum magnetism and cold-atom physics.

Department(s)

Physics

International Standard Serial Number (ISSN)

0295-5075

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2011 Institute of Physics - IOP Publishing, All rights reserved.

Publication Date

01 Feb 2011

Share

 
COinS