Abstract
We study the transport properties of ultrathin disordered nanowires in the neighborhood of the superconductor-metal quantum phase transition. To this end we combine numerical calculations with analytical strong-disorder renormalization group results. The quantum critical conductivity at zero temperature diverges logarithmically as a function of frequency. In the metallic phase, it obeys activated scaling associated with an infinite-randomness quantum critical point. We extend the scaling theory to higher dimensions and discuss implications for experiments.
Recommended Citation
A. Del Maestro et al., "Dynamical Conductivity at the Dirty Superconductor-Metal Quantum Phase Transition," Physical Review Letters, vol. 105, no. 14, American Physical Society (APS), Oct 2010.
The definitive version is available at https://doi.org/10.1103/PhysRevLett.105.145702
Department(s)
Physics
Keywords and Phrases
Function of frequency; Higher dimensions; Metallic phase; Numerical calculation; Quantum critical; Quantum critical points; Quantum phase transitions; Renormalization group; Scaling theories; Ultra-thin; Zero temperatures; Nanowires; Quantum chemistry; Statistical mechanics; Superconducting materials; Superconductivity; Transport properties; Phase transitions
International Standard Serial Number (ISSN)
0031-9007
Document Type
Article - Journal
Document Version
Final Version
File Type
text
Language(s)
English
Rights
© 2010 American Physical Society (APS), All rights reserved.
Publication Date
01 Oct 2010