Fabrication, Characterization, and Theoretical Analysis of Controlled Disorder in the Core of Optical Fibers
Abstract
We present results of experimental and theoretical studies of polarization-resolved light transmission through optical fiber with disorder generated in its germanium-doped core via UV radiation transmitted through a diffuser. In samples longer than a certain characteristic length, the power transmitted with preserved polarization is observed to be distributed over all forward-propagating modes, as evidenced by the Rayleigh negative exponential distribution of the near-field intensity at the output surface of the fiber. Furthermore, the transmitted power becomes also equally distributed over both polarizations. To describe the optical properties of the fibers with the experimentally induced disorder, a theoretical model based on coupled-mode theory is developed. The obtained analytical expression for the correlation function describing spatial properties of the disorder shows that it is highly anisotropic. Our calculations demonstrate that this experimentally controllable anisotropy can lead to suppression of the radiative leakage of the propagating modes, so that intermode coupling becomes the dominant scattering process. The obtained theoretical expressions for the polarization-resolved transmission fit very well with the experimental data, and the information extracted from the fit shows that radiative leakage is indeed small. The reported technique provides an easy way to fabricate different configurations of controlled disorder in optical fibers suitable for such applications as random fiber lasers.
Recommended Citation
N. P. Puente et al., "Fabrication, Characterization, and Theoretical Analysis of Controlled Disorder in the Core of Optical Fibers," Applied Optics, vol. 50, no. 6, pp. 802 - 810, Optical Society of America (OSA), Feb 2011.
The definitive version is available at https://doi.org/10.1364/AO.50.000802
Department(s)
Physics
Keywords and Phrases
Anisotropy; Diffusers (Optical); Fiber Lasers; Fiber Optics; Fibers; Germanium; Optical Fiber Fabrication; Optical Fibers; Optical Properties; Polarization; Ultraviolet Radiation; Analytical Expressions; Characteristic Length; Correlation Function; Coupled-mode Theory; Experimental Data; Intermode Couplings; Near-field Intensity; Negative Exponential Distribution; Propagating Mode; Radiative Leakage; Random Fibers; Rayleigh; Scattering Process; Spatial Properties; Theoretical Expression
International Standard Serial Number (ISSN)
1559-128X
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2011 Optical Society of America (OSA), All rights reserved.
Publication Date
01 Feb 2011