Abstract

We demonstrate experimentally the efficient control of light intensity distribution inside a random scattering system. The adaptive wave front shaping technique is applied to a silicon waveguide containing scattering nanostructures, and the on-chip coupling scheme enables access to all input spatial modes. By selectively coupling the incident light to the open or closed channels of the disordered system, we not only vary the total energy stored inside the system by a factor of 7.4, but also change the energy density distribution from an exponential decay to a linear decay and to a profile peaked near the center. This work provides an on-chip platform for controlling light-matter interactions in turbid media.

Department(s)

Physics

Keywords and Phrases

Atomic Physics; Adaptive Wave Fronts; Control Of Energies; Efficient Control; Energy Density Distributions; Exponential Decays; Light Intensity Distribution; Light-matter Interactions; Random Scattering, Wavefronts

International Standard Serial Number (ISSN)

0031-9007

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2016 American Physical Society (APS), All rights reserved.

Publication Date

01 Aug 2016

Included in

Physics Commons

Share

 
COinS