Abstract
The application of neural networks as a tool for reactor diagnostics is examined here. Reactor pump signals utilized in a wear-out monitoring system developed for early detection of the degradation of a pump shaft [17] are analyzed as a semi-benchmark test to study the feasibility of neural networks for monitoring and surveillance in nuclear reactors. The Adaptive Resonance Theory (ART 2 and ART 2-A) paradigm of neural networks is applied in this study. The signals are collected signals as well as generated signals simulating the wear progress. The wear-out monitoring system applies noise analysis techniques and is capable of distinguishing these signals apart and providing a measure of the progress of the degradation. This paper presents the results of the analysis of these data and provides an evaluation on the performance of ART 2-A and ART 2 for reactor signal analysis. The selection of ART 2 is due to its desired design principles such as unsupervised learning, stability-plasticity, search-direct access, and the match-reset tradeoffs. ART 2-A is selected for its speed. Two simulators are built. One is ART 2, and the other ART 2-A. The result is a success for both paradigms, and the study shows that ART 2-A is not only able to learn and distinguish the patterns from each other, its learning speed is also extremely fast despite the high-dimensional input spaces. © 1992 IEEE
Recommended Citation
S. Keyvan, "Sensor Signal Analysis By Neural Networks For Surveillance In Nuclear Reactors," IEEE Transactions on Nuclear Science, vol. 39, no. 2, pp. 292 - 298, Institute of Electrical and Electronics Engineers, Jan 1992.
The definitive version is available at https://doi.org/10.1109/23.277499
Department(s)
Nuclear Engineering and Radiation Science
International Standard Serial Number (ISSN)
1558-1578; 0018-9499
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Institute of Electrical and Electronics Engineers, All rights reserved.
Publication Date
01 Jan 1992