Multi-Modal Tomographic Imaging System for Poolside Characterization of Nuclear Test Fuels: Design Considerations and Studies
Abstract
Testing and qualification of advanced nuclear fuels involve an iterative process of prototyping, in-pile irradiation testing, and in/ex situ examination. Fuel restructuring and fission product migration during burnup are among the most important aspects of fuel evolution and affect several important performance characteristics (e.g., heat removal, accident tolerance, and fission product retention). Poolside nondestructive characterization techniques provide fuel developers with tools to understand fuel evolution at different time points of burnup. A design for a compact, submersible, and multi-modal (transmission and emission) gamma-ray tomography system for imaging irradiated nuclear fuel is presented herein. Detector selection, collimator geometry and fabrication, mechanical design, imaging protocol, and acquisition protocol are discussed. Modeling calculations showed that sub-millimeter resolution could be achieved in a matter of hours in both transmission and emission tomography images. Several design compromises and fabrication challenges are discussed to further the development of future submersible gamma-ray tomography instruments.
Recommended Citation
S. Kilby et al., "Multi-Modal Tomographic Imaging System for Poolside Characterization of Nuclear Test Fuels: Design Considerations and Studies," Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 1045, article no. 167553, Elsevier, Jan 2023.
The definitive version is available at https://doi.org/10.1016/j.nima.2022.167553
Department(s)
Nuclear Engineering and Radiation Science
Keywords and Phrases
Computed Tomography; Emission Tomography; Gate Opensource Software; Monte Carlo N-Particle Transport; Nondestructive Characterization; Nuclear Fuel Characterization
International Standard Serial Number (ISSN)
0168-9002
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2023 Elsevier, All rights reserved.
Publication Date
01 Jan 2023
Comments
U.S. Department of Energy, Grant NRC-HQ-13-G-38-0026