"Feasibility of 106Ru Peak Measurement for MOX Fuel Burnup Analysis" by M. L. Dennis and Shoaib Usman
 

Feasibility of 106Ru Peak Measurement for MOX Fuel Burnup Analysis

Abstract

Simulations were performed using ORIGEN-ARP to investigate ¹³⁷Cs and ¹⁰⁶Ru-¹⁰⁶Rh as suitable fission products for non-destructive analysis of irradiated MOX. The simulations confirm that both ¹³⁷Cs and ¹⁰⁶Ru will provide a linear correlation with burnup when exclusively applied to MOX fuel assemblies. Moreover, ¹⁰⁶Ru can also be used in conjunction with cesium to form a ratio almost independent of enrichment and power history. Simulations were conducted using three different uranium enrichments and one MOX enrichment over a burnup range of 20,000-60,000 MWD/MTHM. Comparison of the three uranium enrichments indicates the ¹⁰⁶Ru ratio is consistent in predicting burnup with a maximum standard deviation of 0.046. Two MOX cases were simulated confirming operational history independence of ¹⁰⁶Ru in predicting total burnup. The ¹⁰⁶Ru burnup ratio also has the benefit of enabling distinction between UO₂ and MOX fuel because of its significantly larger (~11 times) fission yield from ²³⁹Pu. To investigate the detectability of ¹⁰⁶Ru and other cesium peaks, data was collected using a HPGe detector at the Missouri S&T nuclear reactor (MS&TR) beam port. Gamma spectra were obtained immediately following reactor shutdown with the most promising spectrums obtained 3-5 h after shutdown. Even for relatively high enrichment (~20%) fuel at MS&TR, cesium peaks were prominent and easily discernable from the intense Compton continuum. The ¹⁰⁶Ru peak was weak, though still distinguishable from the background, suggesting that with an appropriately designed collimator, suitable detector and electronics it might be feasible to reliably measure ¹⁰⁶Ru in even UO₂ fuel. For MOX and LEU LWR fuels one would expect a more intense ¹⁰⁶Ru signature. © 2010 Elsevier B.V. All rights reserved.

Department(s)

Nuclear Engineering and Radiation Science

International Standard Serial Number (ISSN)

0029-5493

Document Type

Article - Conference proceedings

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2010 Elsevier, All rights reserved.

Publication Date

01 Jan 2010

Plum Print visual indicator of research metrics
PlumX Metrics
  • Citations
    • Citation Indexes: 11
  • Usage
    • Abstract Views: 2
  • Captures
    • Readers: 5
see details

Share

 
COinS
 
 
 
BESbswy