Further on Integrator Circuit Analogy for Natural Convection
Abstract
This research is an extension of the previous work on the development of an integrator (RC) circuit analogy for natural convection. This analogy has been proven experimentally as well as by numerical simulations. Additional Rayleigh-Bénard convection numerical simulations were performed to investigate ΔT (temperature difference between source and sink) dependence of the thermal resistance of a natural convection system. Our results suggest that analogous to voltage dependent resistor (VDR) in electrical engineering, ΔT dependent thermal resistance is observed in natural convection system. This ΔT dependent thermal resistance leads to a variable time constant. Moreover, this research also suggests that for a natural convection system, in addition to the thermal capacitance a kinetic energy capacitance also exists. The relative contribution of kinetic energy capacitance depends on Rayleigh number. These results provide significant step forward towards development of a new inexpensive modeling and transient analysis tool for a natural convection system. © 2009 Elsevier B.V.
Recommended Citation
V. Khane and S. Usman, "Further on Integrator Circuit Analogy for Natural Convection," Nuclear Engineering and Design, Elsevier, Jan 2010.
The definitive version is available at https://doi.org/10.1016/j.nucengdes.2009.10.007
Department(s)
Nuclear Engineering and Radiation Science
International Standard Serial Number (ISSN)
0029-5493
Document Type
Article - Journal
Document Version
Citation
File Type
text
Language(s)
English
Rights
© 2010 Elsevier, All rights reserved.
Publication Date
01 Jan 2010