Evaluation of Borate Bioactive Glass Scaffolds with Different Pore Sizes in a Rat Subcutaneous Implantation Model

Abstract

Borate bioactive glass has been shown to convert faster and more completely to hydroxyapatite and enhance new bone formation in vivo when compared to silicate bioactive glass (such as 45S5 and 13-93 bioactive glass). In this work, the effects of the borate glass microstructure on its conversion to hydroxyapatite (HA) in vitro and its ability to support tissue ingrowth in a rat subcutaneous implantation model were investigated. Bioactive borate glass scaffolds, designated 13-93B3, with a grid-like microstructure and pore widths of 300, 600, and 900 μm were prepared by a robocasting technique. The scaffolds were implanted subcutaneously for 4 weeks in Sprague Dawley rats. Silicate 13-93 glass scaffolds with the same microstructure were used as the control. The conversion of the scaffolds to HA was studied as a function of immersion time in a simulated body fluid. Histology and scanning electron microscopy were used to evaluate conversion of the bioactive glass implants to hydroxyapatite, as well as tissue ingrowth and blood vessel formation in the implants. The pore size of the scaffolds was found to have little effect on tissue infiltration and angiogenesis after the 4-week implantation.

Department(s)

Nuclear Engineering and Radiation Science

Second Department

Materials Science and Engineering

International Standard Serial Number (ISSN)

0885-3282

Document Type

Article - Journal

Document Version

Citation

File Type

text

Language(s)

English

Rights

© 2014 SAGE Publications Ltd, All rights reserved.

Publication Date

01 Jan 2014

Share

 
COinS