Location

Havener Center, St. Pat's Ballroom C

Presentation Date

April 21, 2023, 3:15pm-4:15pm

Session

Session 4

Description

Polymer injection molding processes have been used for over 100 years to create high-volume parts quickly and efficiently. Injection molding uses mold plates that are traditionally made of very hard tool steels, such as P20 steel, which is extremely heavy and has very long lead times to build new molds. In this study, composite-based additive manufacturing (CBAM) was used to create mold plates using long-fiber carbon fiber and polyether ether ketone (PEEK). These mold plates were installed in an injection molding machine, and rectangular flat plates were produced using Lustran 348 acrylonitrile butadiene styrene (ABS). Tensile testing was performed on these parts as well as parts produced using traditional P20 steel mold plates with the same geometry to compare the performance of the different mold plates. The parts produced using the carbon fiber mold plates were within 5% of the tensile strength. However, the parts produced using the carbon fiber mold plates required additional cooling time due to the lower conductivity of the carbon fiber composite compared to the P20 steel. This allows additively manufactured composite molds to be a good substitute for conventional molds in low-volume injection molding production.

Meeting Name

32nd Annual Spring Meeting of the NASA-Mo Space Grant Consortium

Department(s)

Mechanical and Aerospace Engineering

Document Type

Presentation

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2023 The Authors, all rights reserved.

Share

COinS
 
Apr 21st, 3:15 PM Apr 21st, 4:15 PM

COMPARISON OF INJECTION MOLDED ABS USING CONVENTIONAL STEEL AND NOVEL COMPOSITE-BASED ADDITIVELY MANUFACTURED MOLD PLATES

Havener Center, St. Pat's Ballroom C

Polymer injection molding processes have been used for over 100 years to create high-volume parts quickly and efficiently. Injection molding uses mold plates that are traditionally made of very hard tool steels, such as P20 steel, which is extremely heavy and has very long lead times to build new molds. In this study, composite-based additive manufacturing (CBAM) was used to create mold plates using long-fiber carbon fiber and polyether ether ketone (PEEK). These mold plates were installed in an injection molding machine, and rectangular flat plates were produced using Lustran 348 acrylonitrile butadiene styrene (ABS). Tensile testing was performed on these parts as well as parts produced using traditional P20 steel mold plates with the same geometry to compare the performance of the different mold plates. The parts produced using the carbon fiber mold plates were within 5% of the tensile strength. However, the parts produced using the carbon fiber mold plates required additional cooling time due to the lower conductivity of the carbon fiber composite compared to the P20 steel. This allows additively manufactured composite molds to be a good substitute for conventional molds in low-volume injection molding production.