"Research On Wireless Monitoring System For Internal Temperature Field " by Xiaofei Liu, Chunhao Liang et al.
 

Abstract

In the long-term accumulation process, coal gangue can lead to severe consequences such as spontaneous combustion and explosions due to external factors. Additionally, the coal gangue that ignites spontaneously significantly pollutes the land and groundwater, causing serious risks to the health and safety of individuals living and working in the vicinity. Therefore, to mitigate the risk of spontaneous combustion resulting from the long-term accumulation of coal gangue, a monitoring system based on LoRa wireless communication technology is proposed to collect and monitor the internal temperature of coal gangue mountains in real time. In the laboratory, active temperature rise monitoring was conducted on the simulated coal gangue pile to effectively observe the range of temperature diffusion. Simultaneously, field tests were performed in the coal gangue mountain at the coal mine. The laboratory simulation and field test results demonstrate that the system can effectively monitor the internal temperature changes of the gangue mountain, particularly within the horizontal range of 0–0.2 m near the heat source and the vertical range of 0–0.3 m. In addition, the system test indicates that the maximum effective transmission distance for penetration between the main control station and the node is 8 m, while the distance between the nodes is 7.14 m. The system demonstrates strong feasibility for monitoring and providing early warnings regarding the internal temperature of the coal gangue mountain.

Department(s)

Mining Engineering

Publication Status

Open Access

Comments

Anhui University of Science and Technology, Grant None

Keywords and Phrases

Coal gangue mountain; Internal temperature field; Methods of monitoring; Spontaneous combustion; Wireless transmission

International Standard Serial Number (ISSN)

2214-157X

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2025 Elsevier, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Feb 2025

Share

 
COinS