DPM Simulation in an Underground Entry: Comparison between Particle and Species Models

Abstract

The diesel particulate matter (DPM) emission from diesel powered equipment in underground mines can cause health hazards including cancer to the miners. The understanding of the DPM propagation pattern under realistic mining condition is required for selecting proper DPM control strategies and to improve working practices in underground mines. In this paper, three dimensional simulations of DPM emission from the exhaust tail pipe of a load-haul-dump (LHD) vehicle and its subsequent distribution inside an isolated zone in the typical underground mine are carried out using two different solution models available in Ansys Fluent. The incoming fresh air into the isolated zone is treated as a continuous phase and DPM is treated either as a continuous phase (gas) or as a secondary discrete phase (particle). Species transport model is used when DPM is treated as gas and discrete phase model is used when DPM is assumed to behave like a particle. The distributions of DPM concentration inside the isolated zone obtained from each method are presented and compared. From the comparison results, an accurate and economical solution technique for DPM evaluation can be selected.

Department(s)

Mining Engineering

Comments

National Institute for Occupational Safety and Health, Grant None

Keywords and Phrases

CFD; Dead-end; Discrete phase model; DPM; Species transport model

International Standard Serial Number (ISSN)

2095-2686

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 Elsevier, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Publication Date

01 May 2016

Share

 
COinS