Abstract

To develop a natural mineral-based electrochemical enzyme biosensor, natural molybdenite (MLN), tyrosinase (TYR), and acridine orange (AO) were coadsorbed onto a glassy carbon electrode (GCE). The developed TYR/AO/MLN-GCE-based amperometric TYR biosensor exhibited excellent performance for highly sensitive determination of catechol (linear range, 0.1-80 μM; sensitivity, 0.0315 μA/μM; LOD, 0.029 μM; response time, <4 >s) with good reproducibility and good operational and storage stabilities. The electrochemical impedance spectroscopy (EIS) and quartz crystal microbalance with dissipation (QCM-D) revealed interesting roles of AO: (1) an efficient glue for enhancing the amount of the adsorbed TYR on the MLN-GCE, (2) an anchor for efficient orientation of the adsorbed TYR on the MLN-GCE, and (3) a stabilizer providing a suitable microenvironment for the adsorbed TYR on the MLN-GCE surface. This physical adsorption-based AO-coupled enzyme-modification strategy onto natural MLN would be a versatile strategy to develop cost-effective and environment-friendly natural mineral-based electrochemical biosensors and bioelectronic devices.

Department(s)

Mining Engineering

Comments

University of Science and Technology Liaoning, Grant 2019TD01

International Standard Serial Number (ISSN)

2470-1343

Document Type

Article - Journal

Document Version

Final Version

File Type

text

Language(s)

English

Rights

© 2024 American Chemical Society, All rights reserved.

Creative Commons Licensing

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Date

01 Jun 2021

Share

 
COinS